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1, INTRODUCTION 

The treatment of the subject of “compensation” in calorimetry is extensive [l]. 
It is also rather confusing to the amateur, in whose ranks the authors are firmly 
ensconced. In an effort to see more clearly what physical effects are important, 
some simple minded approximations are explored. The hope is that they will yield 
some guidance and intuition beyond that which is afforded by massive Monte Carlo 
packages. 

2. STOCHASTIC ERRORS FOR JETS AND HADRONS 

Suppose a single hadron is incident on a uniform calorimeter as shown in Fig. 
la. It is assumed that the response of the detector can be approximated to be a 
“stochastic” term, a, due to statistical fluctuations in the shower/detection process 
and a “constant” term, lb, due to non-uniformities in the construction of the detector. 
For example, the constant term could be due to transverse variation in the thickness 
of the absorber plate or detector plate. These latter errors lead to fractional energy 
errors which are independent of the incident particle energy. A calibration 
procedure is assumed, which connects the detected signal, Eo. to the incoming energy 
E. 

dE=a&$bE 

Eo(h)=QE, EH=l 

dEo(h)=dE 1) 

In Eq. 1, a is the stochastic coefficient, b is the constant coefficient, and E” is the 
calibration constant. Clearly, for a single incident hadron, the detected error, dEo(h) 
is equal to the parameterized error, dE. This is the operational definition of how the 
error is measured, in any case. In the low energy regime the stochastic term 
dominates, so that d%(h) - a&. 



What about the situation shown in Fig lb.? In that case, an ensemble of hadrons 
of total energy E and energy fraction zi impinges on the uniform calorimeter. 

xzi=l,xki=E 

Eo(J)=xki 

-?A 2) 

The calibration is as in Eq. 1, so that Eo(J) is just the sum of the incoming 
energies. Assuming statistical independence of the measurements, the error on the 
ensemble energy, dEo(J), is just what one would expect if the ensemble were a single 
hadron of energy E, if the stochastic errors dominate the constant errors. In this 
sense the ensemble of particles acts, with respect to errors, as a single parent 
particle, of energy E. 

Note that this result is completely independent of the “fragmentation function” 
which determines how the zi are distributed. That is as it should be since the 
stochastic error is related to the measurement of, and the associated error in, the total 
number of particles in the calorimeter shower. This total number should be 
independent of how it is subdivided. Thus, in this limit, the “jet” can be considered to 
be a single particle w.r.t stochastic errors. 

3. CONSTANT TERMS FOR JETS AND HADRONS 

Suppose instead that one is in the high energy regime where the stochastic 
term has died off and only the constant term remains. In that case for a single 
particle dEo(h) - bE. One is no longer measuring properties of the particles, but 
rather the inhomogenities inherent in the detecting medium. 

=bEJxzi2 

-bEzl 3) 

In Eq. 3, the approximation is made that the sum of the squares of zi in 
quadrature retains only the “leading particle” term, the largest zi, which is defined to 
be zl. This means that the error on E(J), dEo(J), is less than one would ascribe to a 
particle with a total energy equal to the sum of the energies of the ensemble. This 
conclusion seems to be an inescapable consequence of straightforward error 
propagation. Since zi < 1, one will do better in general by measuring the individual 
particles. In the special case of n particles fragmenting equally, zi = l/n. The exact 
result is that dEo(J) = bE/d, Clearly, one does better for n > 1. In the case of a 
fragmentation distribution where one particle “leads” the fragmentation chain, zl > 
zi, i > 1, then the approximation made in Eq. 3. applies. 

As a concrete example, suppose one has a calorimeter with a = 0.3 and b = 0.05. A 
10,000 GeV jet fragments into 4 hadrons sharing the energy equally. These 
fragments have errors dominated by the constant term. For a single particle, the 



expected error is - 500 GeV. However, the hadrons in the jet sum to 10,000 GeV with 
an error of 250 GeV, half the single particle error. 

4. SIMPLE MODEL FOR A SEGMENTED CALORIMETER 

One can now go ahead and look at a simple minded model for a segmented 
calorimeter. Consider a detector with 2 compartments, an electromagnetic, EM, 
followed by an hadronic, HAD. There are calibration constants for electromagnetic 
showers, en and e’n for the EM and HAD sections. In addition, the HAD section has a 
separate calibration constant, e’u for incident hadrons. The use of these constants 
will be discussed in what follows. A schematic diagram of this model is given in Fig. 
2a. 

Consider an incident neutral no. The EM section is calibrated so that en = 1. The 
errors are assumed to be describable by a stochastic term, an, and a constant term bn. 

Eo(Z")=EEE 

&a=1 

dEo(z")=a,&@b,E 4) 

Now consider a hadron, h, striking the calorimeter. The hadron interacts in the 
HAD section, and has a fraction ,fo, which goes into neutral particle production. We 
approximate its statistical error, dfo, as due to the fluctuation in the first interaction 
initiating the shower. Further fluctuations deeper in the shower for higher 
generations are ignored. This is similar to the situation in a photomultiplier tube. 
The photocathode statistical error roughly defines the statistical error in the output 
pulse height. One calibrates so that, on the average, the HAD response to h is the 
same as the EM response to neutral pions. The errors are assumed to be covered by aIt 
and b,, which are analogous to the quantities defined for the EM compartment. 

Eo(h,=fo&;E+(l-fo)&E= 

E&;(fO+ (l-fO)&;I /E;) 

<fo>&~+(l-<fO>)&~=l 

dEo(h)=a, E@bHE d- 5) 

There is an additional source of error for the HAD section. The fact that the 
response of the calorimeter to charged and neutral pions may be different means 
that one has a nonuniform medium. This nonuniformity means that one will induce 
a “constant term”. The calibration scheme insures that < Eo(h) > = E, but as seen from 
Eq. 5, fluctuations in fo, dfo, lead to errors in Eo(h), dEo(h), if &‘n/e’n is not = 1. If e’n = 
E’R, the calorimeter is called “compensating” and no extra error is induced, since (see 
Eq. 5) Eo(h) = [ fo + (I-fo)] E’RE = E, independent of fo. 

If the compensation condition is not met, then there is an additional error, 
[dEo(h)le/h. 



[dEo(h)le/h =&,(I-&;i /& 
E 

-df+-&k/E;) 
6) 

The function fo is the fraction of neutral pions in the shower. The statistical 
variation in that number should be defined by the number of neutrals produced in 
the first interaction. The resulting constant term due to “e/h”, b(eih), can be read 
off from Eq. 6. 

dfo/fo-l/&n..> 

b(e/h)- 
fou-&;,/&;) 

J<n,> 7) 

This equation for b(e/h) is an approximation to the celebrated “constant term” 
[Il. It is numerically about 0.17 for the factor which converts noncompensation, 
E’~~/E’~ not = 1, to a constant error, b(e/h). Clearly, in this simple model b(e/h) cannot 
be a constant, since the statistical variation in the number of neutral secondaries 
decreases as the square root of the logarithm of the c.m. energy squared which is 
proportional to E [2]. 

For example, < nch > = 10 for c.m. energy of 40 GeV, or E = 800 GeV, while < nch > = 
4 for c.m. energy of 10 GeV or E = 50 GeV. Assuming that the mean number of 
neutrals is l/2 the mean number of charged pions, and consequently that fo is = 0.33, 
the “constant” conversion factor is 0.21 and 0.14 for E = 50 and 800 GeV respectively. 
Clearly, the magnitude is close to that of Ref. 1, and the variation with E, the square 
root of the logarithm of E, is sufficiently slow that it can be called a “constant” term. 

5. MODEL FOR JETS IN A CALORIMETER 

The calorimeter response is as defined and discussed in Section 4 above. A 
schematic of the jet, J, hitting the calorimeter is shown in Fig. 2b. The neutral 
fraction in the incoming jet is Fo, that for the showering interaction in the HAD 
section is fo. The jet is an ensemble of particles distributed in momentum as zD(z) 
with Fo neutrals, zi, and (I-Fo) charged particles, zj. The EM section is calibrated just 
as before, eE = 1. 

~zi=Fo,~z~(l-Fo) 

Eo(7)=&,zki 

=(zzi)E 

=FoE 8) 

The hadrons are, likewise, statistically independent objects which interact in 
the HAD compartment. Calibrating as above for single hadrons, one finds that, on 
average, the jet energy is correctly measured, < Eo(J) > = E. The weak energy 
dependence of fo has been ignored, so that it factors out of the energy sum. 



Eo(Ch)=(fo&~+n-fo)E;I)~kj 

cEo(ch)>=Ckj=(l-Fo)E 

<Eo(J)>=<Eo(ch)>+Eo(y)=E 9) 

This is fine, but what about the fluctuations? The errors on the incident neutral 
energy can be read off from Eq. 8. They consist of stochastic and constant terms 
folded in quadrature. The approximation that the sum of the squares of zi is the 
leading neutral, 21(y), has been made in Eq. 10. 

dEo(y)= z(dki? 4 

-a,dFoE@b,zl(y)E 10) 

The charged hadrons have statistical errors, errors due to inhomogenities, and 
the “noncompensation” error. The normal errors come from the dkjZ term in Eq. 11, 
while the noncompensation term is proportional to kj2. The error dEo(ch) can be 
read off from Eq. 9. As above, energy independence of the calibration constants, and 
fo, has been assumed. This assumption is not critical to the argument and is merely a 
convenient approximation. 

(dEo(ch))Z=x( dkj2+kj2dfoz (EL-&L)* 

=Zdkj2+(dfo(&~-&;1))2~kjj2 

In analogy to Eq. 10, the error on the charged hadrons has 
the stochastic terms, the constant terms, and the noncompensation 
the individual hadrons. The leading charged fragment in the jet is 

(dEo(ch$-a$-FFo)E+(b&h)E) 

+(b(e/hW(h)E)* 

11) 

contributions from 
terms relevant to 

labelled by 21(h). 

12) 

We are now in a position to gather the errors together. The separate neutral and 
charged stochastic errors are weighted by Fo and (I-Fo) respectively. The neutrals 
have a constant term contribution, while the charged particles have a similar term 
plus an additional one due to noncompensation. 

13) 

For a perfectly uniform detector, the stochastic terms make physical sense. If 
they dominate, then the “jet” has errors which are the same as the sum of the jet 
parts. In the high energy regime, the constant terms are expected to dominate. The 
form of these terms for the jet is familiar from a look at Eq. 3. If one has built a very 
uniform, but noncompensating calorimeter, then, at high energies, the term with 
the b(e/h) factor will dominate. The factor multiplying b(e/h) means that the effect 
is reduced with respect to that for a single particle. 

5 



An algebraic realization of the previous work is given in the following example. 
Consider a jet with a 5000 GeV momentum. Considered as a single particle, one expects 
that, for a = 0.5 and b = 0.02, the stochastic and constant error is 2.12%. The e/h error, 
if e’R/~‘n = l/1.3, is 6%. for a total error of 6.4%. The form of Eq. 13 implies that, for zl 
= 0.23, [3] there is a 0.84% stochastic and constant error. The b(e/h) error contributes 
1.4%. leading to a total estimated error of 1.6%. 

The result of the detailed algebra needed to check this approximation is 
presented in Fig. 3. The momentum fraction for the fastest 20 fragments is shown in 
Fig. 3a. This method of estimation gives a good feel for the average fragmentation, 
although the fluctuations are not well represented 131. In Fig. 3b is shown the 
constant and stochastic error, dashed line, and the noncompensation error, solid line. 
The resolution error is 46.7 GeV (0.94%). The noncompensation error is 95.7 GeV 
(1.9%), while the total error is 106.4 GeV or 2.1%. Clearly, the approximation of the zi2 
sum by z12 has underestimated by a small factor since Eq. 13 leads to an estimated 
1.6% error. A glance at Fig. 3b tells one that the next to fastest fragment is, indeed, a 
non-negligible correction. 

6. MONTE CARLO JE?f MODEL 

More detailed work requires a Monte Carlo model [4]. In particular, 
fragmentation and its variations leads to additional errors [3]. An optimized cluster 
cone radius in (n,o) of R = 0.6 for 10 TeV dijets was first established. Stochastic and 
constant errors for neutrals of aE = 0.2 and bE = 0.01 were assumed. Errors for hadrons 
were assumed to be, aH = 0.5 and btt = 0.03. The noncompensation term was taken from 
Eq. 7. The non-linearity induced by the slow energy variation of fo and dfo was 
parametrized as in Ref. 5, with Eo = 1 GeV. m = 0.85. 

e/r= 
1 

l- (l---E; /$) (E /Eojm -I 1 14) 

Note that e/n approaches 1 as E gets very large. This asymptote makes physical 
sense, since neutral fluctuations become small at high energies. Note that a 
calibration is implied here. The EM compartment gives a response equal to the 
hadron compartment at high energy. Note that this constraint is consistent with the 
calibration procedure which was defined previously. As an example, for E = 100, 1000 
GeV and E’~/E’~ = l/l.3 one gets e/n = 0.88 and 0.92 respectively. Two possibilities were 
explored. First, that the calorimeter was calibrated only at asymptotic energy. In 
this case the non-linearity defined in Eq. 14 implies an additional error beyond any 
discussed so far. This is because we assumed previously that the weakly energy 
dependent calibration implied in Eq. 5 had been performed. That was the second 
possibility which was considered. 

The mass spectrum for 10 TeV dijets is shown in Fig 4. The spectrum of Fig. 4a 
has clustering errors in addition to calorimeter resolution errors. The spectrum of 
Fig. 4b is as for Fig. 4a except that e’R/~‘g = l/1.3 and thus an additional error, b(e/h), 
has been folded in quadrature. The non-linearity of Eq. 14 induces an error of size 
comparable to that due to b(e/h). The spectrum given in Fig. 4c is as in Fig. 4b, 
except that the energy dependent calibration is not performed, so that the hadron 
response is non-linear and reduced by n/e (Eq. 14). The fractional shift down in 
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reconstructed mass from Fig. 4b to Fig. 4c is similar to that expected for the leading 
fragment, < zl > - 0.2, < kl > - 1000 GeV, of 0.92. The distribution is only slightly 
broadened by non-compensation which is as expected from the numerical estimates 
made above and displayed in Fig. 3. 

Note that 10 TeV is the highest accessible mass, and thus the most sensitive to 
b(e/W Monte Carlo studies were also performed at 0.1 and 1.0 TeV. The results are 
shown in Fig. 5. Clearly for masses of 1 TeV and less, the effects of E’~/E’~ = 1.3 or less 
are barely discernible. Even at 10 TeV mass, the fractional mass resolution is only 
increased by 30%. 

It would appear that the Monte Carlo study confirms the assertion that the 
errors for a jet, in the high energy limit, are reduced with respect to those for a 
single particle. This is in accord with Eq. 3, but not in accord with the concept that a 
jet must be like a particle save that its first interaction is external to the calorimeter. 
In fact, the first interaction fluctuation, which has been explicitly extracted from 
the calorimeter, is the fluctuation to which we have ascribed the major error. 
However, in our simple minded models, if not in the Monte Carlo work, we have not 
yet allowed the composition of the jet to vary, and thus have evaded the fluctuations 
in the “first generation”. This is clearly not fair and must be explored. 

7. “FIRST GENERATION” FRAGMENTATION FLUCTUATIONS 

How is it that the composition fluctuations of the jet may be evaded? In Section 4 
we argued that an incident hadron interacting in the HAD compartment had first 
generation fluctuations which caused a substantial error in the case of a 
noncompensating calorimeter. For example, E’~IE’~ = l/l.3 induced a 6% constant term 
error. What about fluctuations in the fragmentation function D(z) which cause the 
ensemble in the jet to vary in its neutral fraction Fo? 

The calibration constants which have been imposed insure that the error 
coefficient relating dFo to dEo(J) is zero! Consider again the energy output for the jet 
sum. Without imposing the calibration constraint the energy output is. 

Eo(J)=xki+&L zkj[fo+U-fob&/&k] 

y=Fo+(l-Fo)&;:[fgf(l-fo)&;/&;] 
15) 

Clearly, given the calibration condition for the HAD compartment, Eq. 5, Eo(J) 
does not depend on Fo. For example, if <fo> = 0.33, and E’H/E’E = l/1.3, then &~=l and E’E = 
1.2. If the calibration condition is not imposed, then Eo(J) depends on Fo. 

dEo(J) 

c-1 E 
=dFo[l-&;:[fo+(l-fo)&;,/&kl] 

dF0 fo = <fo> 16) 

Clearly, if calibrated properly, the calorimeter gives a resultant output which is, 
on average. not sensitive to dFo. The effect is then second order. For example, if we 
simultaneously allow dfo. then for dfo = 0.2, the fractional error, dEo(J)/Eo(J) = 1% 
which should be compared to the 6% effect one expects in the “single particle” jet 



case. This expectation agrees with the Monte Carlo results shown in Fig. 4 where the 
jet fragmentation dFo is operational. 

Suppose one has a poor calibration, such as EE = E’B = 1. This is far from the 
optimized case, eE = 1, E’~ = 1.2 discussed above. In that case, for <fo> = 0.3 and E’~J/E’~ = 

l/1.3, Eq. 16 yields a fractional jet energy error of 3.2%, which is rather closer to the 
expected single hadron e/h error, b(e/h) of 6%. 

Clearly the measurement process for jets and hadrons is somewhat different. 
For a single hadron, it will likely interact in a homogenous hadron compartment 
which is blind to the differences in response of the calorimeter to hadrons and 
photons. For a jet, one measures the EM fraction in the EM compartment, and 
independently measures the hadrons in the HAD compartment. This implies that Fo is 
tagged for a jet, while fo is not known on an event by event basis. The essential 
ingredient is that the 2 compartments be calibrated such that each give the same 
response for the same incident energy for incident photons and hadrons 
respectively. Therefore, since the basic measurement procedure is different, it is 
perhaps no surprise that the errors for the 2 cases might be different. A hadron 
strikes the HAD compartment and all knowledge of fo is lost; a jet strikes the 
segmented calorimeter and Fo is explicitly tagged in the EM segment. 
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FIGURE CAPTIONS 

Figure 1. Gedanken experiment for uniform, homogeneous calorimeter 

a. Single hadron incident on a calorimeter. 
b. An ensemble of hadrons of total energy E incident on a calorimeter. 

Figure 2. Gedanken experiment for a segmented calorimeter with 2 compartments, 
an electromagnetic (EM) and an hadronic (HAD). The response of these 
compartments to neutral pions and hadrons is different, and labelled by 

, EE, E E and &‘H. 

a. Incident neutral pions and hadrons 
b. An incident jet, J, consisting of a neutral fraction Fo of neutral pions. 

The fractional jet energy carried by the fragment is defined by zi. In 
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the hadron compartment. the fractional neutral energy in the hadron 
shower is defined to be fo. 

Figure 3. Results of a numerical calculation for the fastest 20 jet fragments. 

a. Fractional jet energy as a function of fragment number, where 
fragment 1 is the fastest. 

b. Error in the determination of the fragment energy. The dashed line 
corresponds to dk = 0.5Jk @ 0.02. The solid line is the error due to 
E’~/E’” = 1.3 alone. 

Figure 4. Results of a Monte Carlo simulation for 10 TeV dijets. Histogram of the 
ratio of reconstructed to generated mass. 

a. For a compensating calorimeter. 
b. For a calorimeter with E’RIE’~ = 1.0/1.3 which is calibrated at all 

energies. 
c. For a calorimeter as in b. except that it is only calibrated at asymptotic 

energies. 

Figure 5. Fractional mass resolution for dijets as a function of mass. The 
points/curves correspond to Monte Carlo results for ,a, compensating 
calorimeter ,o, energy calibrated, noncompensating (E’~/E’~~ = 1.3) 
calorimeter, and ,V, asymptotically calibrated, noncompensating 
calorimeter. 
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